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Abstract—Control Barrier Functions (CBFs) are a powerful
tool for ensuring robotic safety, but designing or learning valid
CBFs for complex systems is a significant challenge. While
Hamilton-Jacobi Reachability provides a formal method for
synthesizing safe value functions, it scales poorly and is typically
performed offline, limiting its applicability in dynamic environ-
ments. This paper bridges the gap between offline synthesis
and online adaptation. We introduce REFINECBF for refining
an approximate CBF—whether analytically derived, learned,
or even unsafe—via warm-started HJ reachability. We then
present its computationally efficient successor, HJ-PATCH, which
accelerates this process through localized updates. Both meth-
ods guarantee the recovery of a safe value function and can
ensure monotonic safety improvements during adaptation. Our
experiments validate our framework’s primary contribution: in-
the-loop, real-time adaptation, in simulation (with detailed value
function analysis) and on physical hardware. Our experiments
on ground vehicles and quadcopters show that our framework
can successfully adapt to sudden environmental changes, such
as new obstacles and unmodeled wind disturbances, providing a
practical path toward deploying formally guaranteed safety in
real-world settings.

I. INTRODUCTION

The widespread adoption of learning-based modules for per-
ception and control has unlocked new capabilities in robotics,
from dynamic locomotion [1] to complex navigation [2].
However, their effectiveness is often tightly coupled to their
training conditions, limiting their ability to adapt to uncertain
or evolving scenarios. This lack of adaptability presents a
significant barrier to deployment in safety-critical applications,
where environmental changes or distribution shifts can lead to
catastrophic failures. This necessitates safety modules capable
of adapting to changing conditions online in real-time, directly
at the control level.

A promising approach for realizing such a module is the
safety filter: a component that monitors the actions from a
decision-making module and intervenes only when necessary
to prevent failure [3], [4]. Many of these filters are built
upon a safety value function, a scalar field over the state
space designed to encode safety information. Control Barrier
Functions (CBF) [5] are a prominent example. Typically,
the function’s value at a given state indicates the system’s
safety margin, while its gradient delineates the set of control
actions that maintain or improve safety. The filter leverages the
function’s value and gradient to constrain the nominal control
input to the set of safe control actions at the current state.
However, the central challenge is designing a valid safe value
function, i.e., one that guarantees persistent trajectory safety
from purely pointwise enforcement.

This challenge has been approached from two main direc-
tions, each with significant drawbacks:

1) Constructive methods, such as Hamilton-Jacobi (HJ)
Reachability [6], offer formal guarantees by numerically

solving for the value function. However, they scale
poorly with state dimensionality.

2) Approximate methods, which leverage function ap-
proximators like neural networks, offer scalability but
sacrifice formal guarantees and do not generalize easily.

Crucially, both paradigms struggle to adapt to real-world
variations encountered post-deployment, such as sim-to-real
gaps or unexpected changes in system dynamics.

In this work, we argue that the constructive and approximate
methods for generating safe value functions are not mutually
exclusive but are, in fact, complementary. We propose to
bridge the gap between formal guarantees and scalability by
using a data-driven approximation as a warm start for a formal,
constructive refinement process that leverages HJ Reachability.

A. Related work

Safety is a cornerstone of robotics research, with methods
ranging from optimal control and model predictive control
(MPC) [7] to formal verification [8]. While optimal control
can formally incorporate safety constraints, solving these
problems for complex, nonlinear systems is often computa-
tionally intractable, sacrificing guarantees for real-time perfor-
mance. In contrast, optimal control-inspired approaches, such
as constrained Reinforcement Learning, penalize constraint
violations or provide guarantees solely in expectation, limiting
their use in safety-critical settings. This has led to the rise
of safety filters, standalone modules that minimally modify a
primary policy’s control output to ensure safety [4].

A popular approach to designing these filters is to use a
safety value function—a scalar field over the state space that
encodes safety information. Current research on these value
functions largely falls into two complementary categories.

a) Control Barrier Functions (CBFs): CBFs provide a
principled way to enforce safety online. By constraining the
rate at which a system can approach a failure boundary, a CBF
can be used to formulate a simple, pointwise optimization
problem that minimally modifies a nominal control input to
guarantee safety [9]. This enforcement mechanism is highly
efficient to solve for control-affine systems, for which it
reduces to a quadratic program.

However, the primary challenge for CBFs is characterizing
safety—that is, finding a valid CBF in the first place. While
they can be derived analytically for some systems, this is diffi-
cult for complex nonlinear dynamics, especially under external
disturbances. To address this, learning-based approaches have
been proposed to approximate CBFs from data [10], [11].
These methods, while scalable, often lack formal guarantees
and their reliability depends heavily on the quality and density
of the training data. Approaches like backup CBFs [12]
provide stronger guarantees but introduce significant compu-



tational complexity. Additionally, their overall performance
hinges on the expert design of a fixed “backup” policy.

b) Hamilton-Jacobi Reachability (HJR): In contrast to
CBFs, HJ Reachability provides a formal method to character-
ize safety. It formulates a worst-case optimal control problem
to compute the set of all states from which failure is inevitable,
yielding a value function with strong safety guarantees for
general nonlinear systems with disturbances [13].

However, this approach faces two significant hurdles.
First, its traditional solution involves numerically solving a
Hamilton-Jacobi partial differential equation (PDE) on a state-
space grid. This method suffers from the curse of dimen-
sionality, as its computational complexity grows exponentially
with the number of state variables, typically limiting them to
systems with fewer than six state dimensions [6]. Numerous
works have sought to improve the scalability of the original
formulation directly by leveraging problem structure (e.g., via
warm-starting [14], decomposition [15]) or using learning-
based approximations to eliminate state-space gridding (e.g.,
DeepReach [16], and reinforcement learning [17]). However,
they often do so at the cost of approximation errors, extensive
pre-computation, or overly conservative behavior. Second, and
more critical for online use, HJR is typically used as a least-
restrictive safety filter [18], where the optimal control is
enforced only when near the safety boundary, often leading
to either conservative or chattering control behavior.

In contrast, another family of methods sidesteps the PDE
entirely by trading generality for computational tractability.
These HJ-inspired approaches solve a related but more con-
strained problem, such as using Sum-of-Squares (SoS) opti-
mization for systems with polynomial dynamics [19], [20] or
using simpler geometric representations like zonotopes [21]
which are efficient to propagate but may be overly conservative
for general nonlinear systems. In contrast to the direct HJ
approaches, these methods are often not deployed online
with a safety filter, but e.g., generate safe “funnels” around
trajectories [22] or leverage pre-computed sets for collision
checking [23], [24].

c) Bridging the Gap: Summarizing, CBF-based methods
offer efficient enforcement but rely on a safe value function,
while HJR-based methods provide formal characterization but
typically lack efficient enforcement. For example, [25] lever-
ages HJ-based supervised rollouts for learning a CBF [25].
Choi et al. [26] first established a direct link between CBFs
and HJR using Control Barrier Value Functions (CBVFs).
They bridge this gap by using HJR-like computations (with
discounting) to construct a valid CBVF; unfortunately, this
approach inherits the high computational cost of HJR and does
not leverage approximate solutions.

Alternatively, REFINECBF [27] and its extension HJ-
PATCH [28], leveraged approximate initial value functions
(from e.g., a learned CBF) to warmstart a HJR-based formal
refinement process. Summarized, these methods leverage an
initial approximation (and an adaptive updating scheme) for
faster convergence. However, they construct the value function
offline for a given environment and are limited to numerical
simulations. This work instead focuses on adapting value func-
tions online to adapt to real-world changes to the environment

or the system, while retaining the safety and convergence
guarantees of [27] and [28].

B. Contributions

This work presents a formally-grounded adaptive safety
framework that enables online, in-the-loop adaptation to
sensed changes in the system and environment. Our algo-
rithmic extensions to REFINECBF and HJ-PATCH rely on
iteratively refining any given value function until convergence
while adapting to changes in the system and the environment.
Specifically, our contributions are:

• A theoretical extension of the control-only RE-
FINECBF [27] method to formally guarantee safety for
systems subject to unknown but bounded external distur-
bances.

• Unified algorithmic framework spanning offline and in-
the-loop refinement, including theoretical analysis and
implications for online deployment.

• A rigorous comparative analysis against typical CBF
approaches (disjoint CBFs, backup CBFs), highlighting
the benefits of principally refining online in realistic
simulated experiments with real-time requirements.

• Extensive, novel experiments on hardware (mobile robots
and quadcopter) that demonstrate real-time adaptation
to online detection of unforeseen obstacles and wind
disturbances.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II reviews the necessary background on value function-
based safety. We then introduce our core algorithms and
their theoretical guarantees: REFINECBF in Section III and
its computationally efficient counterpart, HJ-PATCH, in Sec-
tion IV IV. We validate our framework through extensive
experiments, presenting detailed simulations in Section V,
and hardware demonstrations on multiple robotic platforms
in Section VI. Summarizing, Section VII provides use-cases
and future work, followed by a Conclusion in Section VIII.

II. PRELIMINARIES

We consider a control- and disturbance affine dynamical
system

ẋ = F (x, u, d) ≜ f(x) + g(x)u+ w(x)d, (1)

which describes a wide range of robots, with state x ∈ X ⊂
Rn, input u ∈ U ⊂ Rm, and disturbance d ∈ D ⊂ Ro, where
U and D are polytopes. We assume the dynamics F : Rn×U×
D 7→ Rn are uniformly continuous, bounded, and Lipschitz
continuous in x. The Lipschitz continuity of the dynamics
ensures the existence and uniqueness of system trajectories
xu,d
x,t (s) starting from state x at time t under a control signal

u and disturbance signal d. We denote the set of measurable
functions u : R≥t → U and d : R≥t → D as U and D,
representing the allowed control and disturbance signals.

Let L ⊆ X represent the constraint set, i.e. the set of
non-failure states of the system (1). An element x ∈ X is
considered instantaneously safe if x ∈ L. Its complement,



LC , denotes the set of failure states. The goal of a safety
filter is to keep the system within the constraint set L. In
this work, the disturbance d is determined in reaction to the
control signal in the form of a disturbance strategy d : U 7→ D.
We restrict d to draw from a nonanticipative strategy, which
prohibits using future knowledge of the control signal to
preserve causality [29], with Ξ the set of all such strategies.

A foundational concept for guaranteeing safety is control
invariance.

Definition 1 (Robust Control Invariant Set). A set C ⊆ X is a
robust control invariant set if for any state x ∈ C and initial
time t ∈ R, there exists a control signal u ∈ U such that for
all disturbance strategies d ∈ Ξ, the system trajectory remains
in the set, i.e., xu,d

x,t (s) ∈ C for all s ≥ t.

By this definition, the empty set ∅ is also considered control
invariant, as the required condition holds vacuously. For any
given constraint set L, we are often interested in finding the
largest possible safe region within it. This is known as the
viability kernel.

Definition 2 (Viability Kernel, [30]). For any set K, let the
viability kernel S(K) be such that S(K) ⊆ K and if there
exists C ⊆ K such that C is control invariant, then C ⊆ S(K),
hence S(K) is the largest control invariant set in K.

A. Control Barrier Functions

Let a value function h : X 7→ R be Lipschitz continuous and
let H := {x | h(x) ≥ 0} ⊆ X be the 0-superlevel set of h. We
define the Lie derivative LFh(x, u, d) := ⟨∂h∂x , F (x, u, d)⟩ and
the Hamiltonian L∗

Fh(x) := infd∈D supu∈U LFh(x). For non-
continuously differentiable functions, the Lie derivative can be
formulated through the Clarke generalized gradient [31].

Nagumo’s theorem [32] provides a condition for control
invariance: assume ∂h

∂x ̸= 0 for all x ∈ ∂H := {x | h(x) = 0},
then H is control invariant if and only if

L∗
Fh(x) ≥ 0 for all x ∈ ∂H. (2)

In this paper, a safe value function is considered to be any
function h that satisfies Nagumo’s theorem, and whose 0-
superlevel set H is a subset of L, H ⊆ L. The CBF condition
extends Nagumo’s theorem from the boundary to the interior
of the set H with a Lyapunov-like condition, ensuring the state
does not approach the boundary too quickly.

Definition 3 (Control Barrier Function [9]). Let H denote the
0-superlevel set of a continuously differentiable value function
h : X 7→ R, then h(x) is a control barrier function for (1) if
there exists an extended class K function α and a set C with
H ⊆ C ⊂ Rn such that

L∗
Fh(x) ≥ −α(h(x)) (3)

for all x ∈ C.

A CBF defines a control invariant set H [33]. For complete-
ness, we define the state-dependent allowable control range for
a CBF as follows:

Gh(x) :=
{
u ∈ U

∣∣ min
d∈D

LFh(x, u, d) + α(h(x)) ≥ 0

}
(4)

Any choice of control law for which u ∈ G will ensure that
the system (1) remains in H indefinitely.

The popularity of CBFs can be attributed to the ease with
which they can be used in a safety filter online through an
optimization problem. At each time step, a nominal (safety-
agnostic) policy π̂(x) is passed through a filter that solves:

u∗(x) = argmin
u

∥u− π̂(x)∥22
subject to Lgh(x)u ≥ −γh(x)− Lfh(x)

−min
d∈D

Lwh(x)d

u ∈ U .

(5)

In this paper we assume α(x) = γx, for γ > 0. As the
disturbance and control are independent for (1), we can first
solve for the disturbance which decreases the value function
most through an exhaustive search of its vertices, with the re-
sulting optimization problem to solve for u∗ being a quadratic
program (QP), which can be solved in real time (> 100 Hz)
for typical robotics applications.

The main challenge of this approach, however, lies in
finding a valid function h for which the QP (5) is feasible
for all states x in its 0-superlevel set. To precisely discuss the
quality of candidate CBFs often used in practice, we classify
CBFs into 4 possible categories:

TABLE I: The 4 possible categories of CBFs and their properties.

Characterizes safety:
H∩ L = ∅

Characterizes control
invariance: (5) ∀x

Non-intrusive
safety filter

Invalid CBF ✓ ✗ ✓/✗

Unsafe CBF ✗ ✓ ✓
Conservative
(safe) CBF ✓ ✓ ✗

Desired
(safe) CBF ✓ ✓ ✓

This work proposes methods to refine a candidate CBF into
a desired, provably safe one. The resulting functions, which
are constructed using tools from HJ reachability theory, are
technically Control Barrier Value Functions (CBVFs), which
we detail in the following section.

B. HJR-based Control Barrier Value Functions
Given the aforementioned constraint set L, we formulate an

associated constraint function, ℓ(x), such that ℓ(x) ≥ 0 if and
only if x ∈ L, e.g., a (weighted) signed-distance function. For
a desired decay rate λ, see e.g. (5), we define the associated
CBVF [26]:

hλ(x, t) = min
d∈Ξ

max
u∈U

min
s∈[t,0]

eλ(s−t)ℓ
(
xu,d
x,t (s)

)
. (6)

We note that hλ is uniquely defined for each fixed value of
λ ≥ 0, and for λ = 0 its definition matches the definition of
the standard HJ reachability value function formulation [34].

It is important to note that any CBF is a CBVF, while the
inverse does not hold. We introduce the following remark:

Remark 1 (Differentiating a CBVF from a CBF). In addition
to satisfying Eq. (3) for all states, a CBF h(x) is, by definition
(Def. 3), also continuously differentiable, i.e. h(x) ∈ C1. In
contrast, a CBVF is differentiable almost everywhere, see [26].



With a value function defined, the system can maintain
safety during deployment by incorporating the value function
into a safety filter. Similarly to CBFs, we can define the
admissible control set that retains (finite time) safety, where
we distinguish between the offline decay rate λ and online
decay rate γ.

Gγhλ
(x, s) =

{
u ∈ U

∣∣ min
d∈D

ḣλ(x, s) + γhλ(x, s) ≥ 0

}
(7)

Importantly, the discount factor used to compute the CBVF
offline λ does not require matching the CBVF decay rate
online γ; Specifically:

Proposition 1 (Forward completeness and safety with larger
online discount rate). Applying a discount factor γ online (5)
for a CBVF that is constructed (6) with λ ≤ γ maintains
control invariance of the safe set.

Proof. By inspection of Eq (7), if γ ≥ λ, we have that
Gγhλ

(x, s) ⊇ Gλhλ
(x, s) ̸= ∅ for all x ∈ H and s ∈ [t, 0].

Hence, applying a larger discount rate γ online maintains
pointwise feasibility. In addition, at the boundary of the safe
set, x ∈ ∂H, we have that hλ = 0 for all λ ≥ 0 (see [26]),
hence Gγhλ

(x, s) = Gλhλ
(x, s) by inspection of (7). Combined,

this ensures the same safety guarantees are maintained when
applying a larger discount rate γ online.

This enables setting λ = 0 during construction and applying
any (positive) decay rate γ online. This is particularly useful
as applying a non-zero discount factor offline is limited to
finite-time safety problems [26], whereas a discount factor λ =
0 holds for infinite-time safety, which this work focuses on.
Additionally, considering λ = 0 allows us to freely choose any
γ > 0 for safety enforcement online while providing infinite-
time safety guarantees. The associated admissible control set
for a converged h, i.e. Dth = 0, is as follows:

Gγ(x) =
{
u ∈ U

∣∣ min
d∈D

LFh(x) + γh(x) ≥ 0

}
. (8)

C. Solutions to HJR value functions

To solve for (6), we present the associated continuous so-
lution and its derived time discretized dynamic programming-
based solution. For readability, we will drop the exponential
term λ, i.e. λ = 0, and refer to the equivalent formulas in [26]
for the formulation including λ. The value function for the
γ = 0 case is defined as in [34]:

h(x, t) = min
d∈Ξ

max
u∈U

min
s∈[t,0]

ℓ
(
xu,d
x,t (s)

)
. (9)

We distinguish two popular formulations of HJ reachability
to solve the safety scenario described in this paper. The first
formulation, a single-boundary partial differential equation
(PDE), forces contraction of the value function, and recovers
the largest control invariant subset of the initial value func-
tion’s 0-level set. The second, a variational inequality (VI),
recovers a control invariant set which is a subset of L. In the
classic HJR setting in which the terminal boundary condition is
the constraint function, hb(x) = ℓ(x), these two formulations
are equivalent.

1) Single-Boundary PDE Formulation [35]: The value
function h(x, t) is the viscosity solution to the following
Hamilton-Jacobi-Isaacs PDE (HJI-PDE):

Dth(x, t) + min
{
0,max

u∈U
min
d∈D

Dxh(x, u, d, t) · F (x, u, d)
}
= 0

h(x, 0) = hb(x). (10)

The discrete time equivalent of (10) uses the following
dynamic programming update rule:

h(k+1)(x) = h(k)(x) + ∆(k) min{0, L∗
Fh

(k)(x)}, (11)

with ∆(k) denoting the time-step which is dynamically up-
dated based on the magnitude of the Hamiltonians L∗

Fh
(k)(x),

see [36] and (14) for details. Eqs. (10) and (11) define
contractive mappings over time through the min-with-zero
operation.

2) Variational Inequality Formulation [34]: The value
function h(x, t) is the viscosity solution to the following HJI-
VI:
0 = min

{
ℓ(x)− h(x, t),

Dth(x, t) + max
u∈U

min
d∈D

Dxh(x, u, d, t) · F (x, u, d)
}

h(x, 0) = hb(x). (12)

The discrete time equivalent of (12) uses the following
dynamic programming update rule:

h(k+1)(x) = min
{
ℓ(x), h(k)(x) + ∆(k)L∗

Fh
(k)(x)

}
. (13)

In practice, we solve (11) and (13) through spatial dis-
cretization on a pre-defined set of grid points as no closed-form
solution exists. The Hamiltonian L∗

Fh
(k)(x) is typically ap-

proximated using finite difference methods, namely (weighted)
essentially non-oscillatory ((W)ENO) schemes [37] as follows:

LFh(x, u, d) := ⟨∇h(x), F (x, u, d)⟩ ≈ ⟨δp∆(h), F (x, u, d)⟩,
(14)

with δp∆ a finite difference operator of order p, i.e. the
operator includes p neighbors in every dimension. In addition,
the Hamiltonian L∗

Fh(x) is computed through an exhaustive
search of the vertices of U and D.

Remark 2 (Convergence of CBVF). A stationary solution
to (10) and (12), or equivalently, if (11) and (13) converge
(k → ∞), the result characterizes an infinite-time CBVF,
which encodes safety for an infinite duration. We drop the
time-dependence for such a value function h(x).

III. REFINING CBFS

This section details our primary contribution: a frame-
work for refining a candidate value function h0, using the
HJI-VI formulation (12). This approach leverages an initial
guess—such as a learned neural network or a hand-designed
function—to “warm-start” the computation, enabling faster
convergence and online adaptation. We first establish the
theoretical guarantees for our method in a static environ-
ment. We then present two algorithms: REFINECBF, a direct
implementation of the refinement process, and SAFEADAPT-
REFINECBF, a variant with stronger intermediate safety guar-
antees, at the cost of added conservativeness. Finally, we
discuss the practical implications of using these algorithms
for in-the-loop adaptation in dynamic environments.



A. Guarantees underlying refining CBFs

We begin by establishing the theoretical guarantees of our
approach in a static environment. In this section, we first prove
our main result: that the refinement process, when warm-
started with a candidate function h0 is guaranteed to converge
to a valid and safe CBVF (Theorem 1). We then analyze the
properties of the value function during convergence, establish-
ing conditions under which safety is preserved throughout the
refinement process (Lemma 4).

We define the boundary function of the HJI-VI (12) as the
candidate value function, hb = h0, shifting the objective from
a standard safety evaluation in (9) to include a recursive refine-
ment of the candidate value function. This defines the HJI-VI
whose unique viscosity solution is the following trajectory-
based value function:

h(x, t) = min
d∈Ξ

max
u∈U

min

{
min

s∈[t,0)
ℓ
(
xu,d
x,t (s)

)
,

h0
(
xu,d
x,t (0)

)}
.

(15)

To facilitate the proofs, we assume the following:

Assumption 1 (The candidate CBF is pointwise conservative
with respect to the constraint function). For all x, we assume
the candidate CBF h0(x) satisfies h0(x) ≤ ℓ(x).

As outlined in [27], Assumption 1 is not strictly re-
quired, but facilitates the proofs below. It can be trivially
satisfied by defining a modified candidate CBF h0(x) =
min{h0(x), ℓ(x)}.

Theorem 1 below is the key theoretical underpinning of
REFINECBF.

Theorem 1 (Convergence to a safe CBVF). If (15) converges
to h∗(x) as t → −∞, then h∗(x) is a safe CBVF for all
x ∈ H∗, its 0-superlevel set.

The proof of Theorem 1 relies on the following three
foundational lemmas, which establish that the converged value
function’s 0-superlevel set is control invariant (Lemma 1), a
subset of the viability kernel (Lemma 2), and that the function
itself satisfies the CBF inequality (Lemma 3).

Lemma 1 (Convergence to a control invariant set). If (15)
converges to h∗(x) as t → −∞, i.e. h∗(x) characterizes a
stationary solution of (12), then H∗ is control invariant, i.e.
its Hamiltonian L∗

Fh
∗(x) ≥ 0 for all x ∈ ∂H∗.

Proof. The stationary version of the HJI-VI, is as follows,
see [38]:

min

{
ℓ(x)− h(x),max

u∈U
min
d∈D

Dxh(x, u, d) · F (x, u, d)

}
= 0.

(16)
Upon inspection of the second term of the minimum operator,
any h∗(x) satisfying (16) satisfies L∗

Fh
∗(x) ≥ 0 for all x.

Particularly, this holds for all x ∈ ∂H∗, thus H∗ is a control
invariant set by Nagumo’s theorem, (2), see [32].

Lemma 2 (Convergence to a subset of the viability kernel).
If (15) converges to h∗(x) as t → −∞, its associated 0-
superlevel set H∗ is a subset of the viability kernel of the
constraint set S(L), i.e. H∗ ⊆ S(L).

Proof. This proof builds on the proof of Theorem 1 in [14].
We (a) leverage that standard HJ Reachability recovers a value
function whose 0-superlevel set corresponds to the viability
kernel [39], and then (b) prove that for any time t ∈ (−∞, 0]
the warmstarted value function is pointwise upper bounded
by standard HJ reachability’s value function. For the purposes
of this proof we define the CBVF obtained when refining
a CBF h0, i.e. through (15), as h(x, t;h0). In contrast, we
define the CBVF obtained using standard HJ reachability,
i.e. through (9), as h(x, t; ℓ). Then, we aim to show that
h(x, t;h0) ≤ h(x, t; ℓ) for all x, t. We observe:

h(x, t;h0) = min
d∈Ξ

max
u∈U

min

{
min

s∈[t,0)
ℓ (x(s)) , h0 (x(0))

}

≤ min
d∈Ξ[t,0]

max
u∈U[t,0]

min

{
min

s∈[t,0)
ℓ (x(s)) , ℓ (x(0))

}
= min

d∈Ξ[t,0]

max
u∈U[t,0]

min
s∈[t,0]

ℓ (x(s))

= h(x, t; ℓ),

where we drop u,d
x,t from the trajectory x(s) for readabil-

ity. The inequality follows directly from Assumption 1, i.e.
h0(x) ≤ ℓ(x) for all x. Therefore, as t → −∞, we have
h∗(x;h0) ≤ h∗(x; ℓ). Combining (a) and (b) we have H∗ =
{x | h∗(x;h0) ≥ 0} ⊆ {x | h∗(x; ℓ) ≥ 0} = S(L), with the
last equality by Definition 2, concluding the proof.

Lemma 3 (Convergence to a CBVF on a subset of the state
space). If (15) converges to h∗(x) as t → −∞, i.e. h∗(x)
characterizes a stationary solution of (12), then h∗(x) is a
valid CBVF for all x ∈ H∗.

Proof. Similarly to Lemma 1, we begin by inspecting the
stationary version of (12), (16). The second term of the
minimum operator implies that any h∗(x) satisfying (16)
satisfies L∗

Fh
∗(x) ≥ 0 for all x.

The value function h∗, for any choice of γ ≥ 0 in (3), with
α(h∗(x)) = γh∗(x) satisfies:

L∗
Fh

∗(x) ≥ 0 ≥ −γh∗(x),

for all x ∈ H∗, with the first inequality by satisfaction of (16)
and the second inequality from h∗(x) ≥ 0 for all x ∈ H∗.

We are now ready to prove Theorem 1:

Proof of Thm 1. Safety is guaranteed by h∗(x)’s 0-superlevel
set, H∗ being (a) control invariant, Lem. 1, and (b) being a
subset of the viability kernel, Lem. 2. Combined with Lem. 3,
we obtain a safe CBVF, concluding the proof.

The convergence guarantees match those of standard HJR,
and similarly do not provide guarantees on the rate of con-
vergence to a safe CBVF, but progressively improve the
CBVF’s minimum finite-time safety as t increases (Remark 3).
Additionally, the key concern in the online setting is not the
final converged value, but the properties of the value function



during refinement. A crucial property is that once the value
function becomes control invariant at any iteration, it remains
so thereafter (Lemma 4).

Remark 3 (Duration of safety). The temporal input of the
value function h(x, t) implicitly provides the duration of safety.
This follows directly from (15), which implies that for any
trajectory starting at x such that h(x, t) ≥ 0 there exists
a control signal u ∈ U such that for any non-anticipative
disturbance strategy d ∈ Ξ the trajectory x remains in L for
at least time t, i.e. ℓ(x(s)) ≥ 0 for all s ∈ [t, 0]. Any control
signal satisfying the time-varying control set defined in (7)
retains safety for at least time t, thus acting as a lower bound
on the duration of safety.

We further note that if the initial approximate CBF h0(x) is
control invariant or if, by coincidence or by deliberate action,
there is a t1 such that h(x, t1) is control invariant, we provide
a guarantee on preserving safety while converging:

Lemma 4 (Refining a safe CBVF will preserve safety). If
there exists t1 ≤ 0 such that h(x, t1) from (15) is control
invariant, h(x, t) is control invariant for all t < t1 ≤ 0.

Proof. For any t ≤ t1 ≤ 0, we can write the following:

h(x, t) = min
d∈Ξ

max
u∈U

min

{
min

s∈[t,0)
ℓ (x(s)) , h(0) (x(0))

}
= min

d∈Ξ
max
u∈U

min

{
min

s∈[t,t1)
ℓ (x(s)) , h (x(t1), t1))

}
.

Then, any x ∈ H(t) satisfies (a) mins∈[t,t1) ℓ (x(s)) ≥ 0
and (b) h (x(t1), t1) ≥ 0. Hence, we can find a trajectory
starting at x that (a) stays safe for at least t − t1 time and
(b) enters a control invariant set H(t1) within t− t1 time, in
which it can stay indefinitely. By construction, H(t) ⊆ L for
all t1 ≤ 0, hence H∗ also characterizes safety.

We leverage Lemma 4 to present a conservative version of
the REFINECBF algorithm, SAFEADAPT-REFINECBF , Alg. 3,
which first forces contraction to a safe (yet not necessarily
performant) CBVF, followed by a possible set expansion.

B. REFINECBF algorithm overview

Algorithm 1 presents our numerical implementation for
refining a candidate CBF (the in-the-loop extension is high-
lighted in teal). The core of the algorithm is the iterative appli-
cation of the HJI-VI update rule from 13 (line 4), initialized
with h0. This process can be run offline until convergence
or, more importantly for our work, executed continuously in-
the-loop. In the online setting, the algorithm observes real-
time changes to the environment-new obstacles (through L),
modified actuation limits of the robot (through U), or changed
disturbances to the system (through D) (lines 5-6)-into the
refinement process. The most current value function is con-
tinuously published (line 7) for use by a safety filter. As is
standard for HJR-based methods, our implementation solves
these updates over a discretized state-space grid.

The accompanying safety filter is detailed in Alg. 2, with
the in-the-loop extension in teal. For each nominal control,
the filter queries the latest value function (and its gradient) to

Algorithm 1 REFINECBF (In-the-loop)

Require: h0(x) : X 7→ R : Initial value function
ℓ(x) : X 7→ R : Current constraint function

1: k ← 0
2: h(0)(x)← min{h0(x), ℓ(x)}
3: while |h(k)(x)−h(k−1)(x)| > ϵ (or Robot operating) do
4: h(k+1)(x)← min

{
ℓ(x), h(k)(x) + ∆(k)L∗

Fh
(k)(x)

}
// Environment updates can occur at a different rate

5: Observe environment
6: U (k+1),D(k+1), ℓ(k+1) ← Update (U (k),D(k), ℓ(k))
7: publishCurrentCBF(h(k+1))
8: k ← k + 1
9: end while

10: return h∗(x) = h(k)(x) ◁ Converged value function

Algorithm 2 REFINECBF safety filter (In-the-loop)

1: j ← 0
2: while Robot operating do
3: x(j) ← estimateState()
4: û← nominalController()

5: hx(j)

, ∂h
∂x

x(j)

← getAndQueryCurrentCBF(x(j))
6: u(j) ← solve (5)(h[x(j)], ∂h

∂x [x
(j)],U (j),D(j), û)

7: Apply u(j) to robot
// Environment updates can occur at a different rate

8: Observe environment
9: U (j+1),D(j+1) ← Update (U (j),D(j))

10: j ← j + 1
11: end while

solve the QP (5). This QP finds the minimum-norm control
input that satisfies the safety constraint, and this safe action is
then applied to the robot (lines 5-7). As we only keep track
of the most recent computed h(x), we assume Dth = 0, i.e.
the safe control set is characterized by (8).

C. Stronger guarantees at increased conservativeness

While REFINECBF guarantees safety upon convergence
(Theorem 1), some applications require stricter assurances
during the refinement process. Therefore, we present a modifi-
cation to Alg. 1 which guarantees a reduction of false positive
states with every iteration:

Definition 4 (False positive states). A false positive state is a
state x that a value function h characterizes as safe which is
not part of the viability kernel for a given dynamical system
and a constraint set L, i.e. any x such that x ∈ H ∩ S(L)C .

The standard REFINECBF algorithm does not provide this
guarantee, as warm-starting with an arbitrary candidate func-
tion implies the HJI-VI update (13) is not a contraction
mapping, allowing H to expand to include unsafe states.

To address this, we propose SAFEADAPT-REFINECBF
(Alg. 3), a two-phase algorithm that ensures a monotonic
reduction in false positive states:

1) Retraction phase: Initially the algorithm uses the con-
tractive HJI-PDE update rule (line 9). This forces the
value function’s safe set to shrink until it represents a



Algorithm 3 SAFEADAPT-REFINECBF (In-the-loop)

Require: h0(x) : X 7→ R : Initial value function
ℓ(x) : X 7→ R : Current constraint function

1: k ← 0
2: retracting ← true
3: h0(x)← min{ℓ(x), h0(x)}
4: while |h(k)(x)− h(k−1)(x)| > ϵ or retracting (or Robot

operating) do
5: if retracting AND |h(k)(x)− h(k−1)(x)| < ϵ then
6: retracting ← false
7: end if
8: if retracting then
9: h(k+1)(x)← h(k)(x) + ∆(k) min{0, L∗

Fh
(k)(x)}

10: else
11: h(k+1)(x)← min

{
ℓ(x), h(k)(x) + ∆(k)L∗

Fh
(k)(x)

}
12: end if

// Environment updates can occur at a different rate
13: Observe environment
14: U (k+1),D(k+1), ℓ(k+1) ← Update (U (k),D(k), ℓ(k))
15: publishCurrentCBF(h(k+1))
16: if U (k+1) ⊆ U (k) or D(k+1) ⊇ D(k) or ∃ x such that

h(k+1)(x) > ℓ(k+1)(x) then
17: retracting ← true
18: h(k+1)(x)← min{ℓ(k+1)(x), h(k+1)(x)}
19: end if
20: k ← k + 1
21: end while
22: return h∗(x) = h(k)(x) ◁ Converged value function

provably safe, control-invariant subset of the viability
kernel. At this point, the set of false positives is empty.

2) Refining phase: Once a safe set has been estab-
lished, the algorithm switches to the HJI-VI update rule
(line 11), which is not contractive. This allows the safe
set to expand to improve performance, while Lemma 4
guarantees that safety, once established, is never lost.

The two-phase implementation in Alg. 3, , with the in-the-
loop extension in teal, guarantees that safety improves with
every iteration, as formalized hereafter in Theorem 2.

Theorem 2 (Safer with every iteration). Alg. 3 monotonically
decreases the rate of false positive states with every iteration.

The proof of Theorem 2 relies on previously introduced
Lemmas 2 and 4. In addition, we introduce Lemma 5 which
guarantees the contraction phase converges to a control invari-
ant set to finalize the proof.

Lemma 5 (Convergence to a control invariant set). If (9)
converges to h∗(x) as t → −∞ for ℓ(x) = h0(x), i.e. h∗(x)
characterizes a stationary solution of (10) initialized with
h(x, 0) = h0(x), then its associated 0-superlevel set H∗ is
control invariant, i.e. L∗

Fh
∗(x) ≥ 0 for all x ∈ ∂H∗.

Proof. The stationary version of the continuous PDE
CBVF, (10), is as follows:

min
{
0,max

u∈U
min
d∈D

Dxh(x, t) · F (x, u, d)
}
= 0. (17)

Upon inspection of the second term of the minimum operator,
we have the same inequality as in Lemma 1, and hence
guarantee control invariance upon convergence.

We are now ready to prove Theorem 2.

Proof of Thm. 2. Alg. 3 is split into 2 stages, (a) retracting
and (b) refining. We will show that (a) iteratively decreases
the number of false positive states to 0, and that subsequently
(b) maintains 0 false positive states with every iteration.

For (a), in the retracting phase, we use the PDE-based DP
update, (11), in line 9. By inspection, h(x, t1) ≤ h(x, t2) for
all x for any t1 ≤ t2 ≤ 0 by (11), thus H(t1) ⊆ H(t2).
This implies, by Def. 4, that the set of false positive states
monotonically decreases with the iterations.

Next, by Lemma 5, if (9) converges to h∗
a(x),H∗

a is a control
invariant set1. Additionally, by Lemma 2, H∗

a ⊆ S(L), so by
Definition 4, post stage (a), H∗

a(x) has 0 false positive states.
For stage (b), refining a safe CBVF (here h∗

a) preserves
safety (Lemma 4). In other words, H(k)

b has 0 false positive
states for every k, concluding the proof.

D. Implications for online adaption in evolving environments

The guarantees established previously assume a static envi-
ronment, as is standard in HJR literature [6]. We now analyze
the practical scenario where either a converged or converging
value function faces a sudden environmental change. While
the refinement process will eventually converge to a new safe
value function, the safety filter’s transient behavior during this
adaptation is critical for safety. We categorize the nature of
these environmental changes as follows:

• Safety enhancing updates (U ↑,D ↓,L ↑): These
changes enlarge the true viability kernel, such as in-
creased actuation limits, reduced disturbance bounds, or
a decrease in failure states. These updates simply render
the current value function to be “safer”, thus maintaining
or improving the degree of safety of the associated filter.

• Safety decreasing updates (U ↓,D ↑,L ↓): These
changes shrink the true viability kernel, such as reduced
actuation limits, larger disturbances, or new obstacles. In
this scenario, the existing value function may now falsely
label unsafe states in the new environmental condition as
safe. For this scenario, to quantify the degree of safety
(through Def. 4), we compare the first observation after
the update (k + 1) with the prior value function (k),
with both considering safety with respect to the novel
environment.

The two proposed algorithms handle safety-decreasing up-
dates differently. REFINECBF has no special mechanism for
updates; it continues iterating and eventually (re-)converges
to a safe value function for the new environment, but of-
fers no guarantees during this transient period. In contrast,
SAFEADAPT-REFINECBF is explicitly designed to handle this
scenario robustly. As detailed in Alg. 3, at risk safety-
decreasing updates force the algorithm back to its retraction
phase (line 17). This ensures the system contracts (if needed)
to a control invariant set under the new environment before

1The subscript a denotes stage a of SAFEADAPT-REFINECBF.



attempting to expand again. This provides a principled way to
ensure that the safety improves with each iteration, allowing
Thm. 2 to extend to in-the-loop operation.

Note that this algorithm is primarily intended for piecewise
stationary environments, rather than those with continuously
time-varying dynamics. In addition, the safety of the filter is
not assured during safety decreasing updates, see Remark 4.

Remark 4 (Safety of the filter). The safety increasing result
of Alg. 3 between iterations is defined as a decrease in
false positive states. This does not imply that safety of the
system is guaranteed when faced with an unexpected safety
decreasing update, as the state of the system can be within
the newly false positive set. During the retraction phase, to
encourage returning to safety, it is possible to either (i) modify
the nominal controller’s goal (if goal position-conditioned) to
the closest state inside the current safe set or (ii) include a
Dth

(k)(x) ≈ h(k)−h(k−1)

∆(k) term to tighten the linear inequality
of (5), although this is now not guaranteed to be feasible with
the input constraints.

E. Use-cases and limitations of REFINECBF
The dense and uniform nature of refineCBF’s global compu-

tation is highly amenable to massive parallelization on modern
GPUs, offering the potential for significant computational
speedups. Nonetheless, a key property of the value function
h∗(x) obtained by REFINECBF is that it satisfies a stronger
condition than is strictly necessary. While a standard CBF
only requires its 0-superlevel set to be control invariant, the
converged HJI-based value function has the property that all of
its superlevel sets {x | h∗(x) ≥ β} for all β ∈ R are control
invariant. Enforcing this unnecessarily strong condition can
increase the computational burden and number of iterations
required for convergence. In addition, while converging, this
method requires updating the entire grid at each iteration. This
is particularly inefficient in common scenarios where the initial
candidate CBF is already “mostly safe” and requires only
minor, localized corrections rather than a full global refine-
ment. This limitation directly motivates HJ-PATCH, which is
designed for precisely this use case.

IV. PATCHING CBFS

As a computationally efficient alternative to REFINECBF,
we introduce HJ-PATCH, an algorithm designed to “patch” an
existing candidate value function, h0, rather than performing
a full global refinement. The core trade-off is this: instead
of converging to a control invariant set within the constraint
set L (as REFINECBF does with the VI formulation), HJ-
PATCH finds the largest control invariant subset within the
0-superlevel set of the initial guess, h0. This is achieved by
using the contractive HJI-PDE formulation (10).

The primary source of computational speedup comes from
a “local” dynamic programming approach. We introduce the
following notation to denote near-boundary states of the value
function h and its 0-superlevel set H:

∂ζH = {x | |h(x)| ≤ ζ}

Our key insight is that for the HJI-PDE formulation, we only
need to update states that directly impact the invariance of

the approximate safe set, i.e. value decreasing states near
the boundary. Therefore, HJ-PATCH maintains an active set
of states, which we denote R. At each iteration, only the
states in this active set are updated, drastically reducing the
computational cost compared to a global update. This active
set is intelligently truncated to exclude states that are non-
contractive (and thus locally safe), and expanded to include
neighbors of states whose values decrease; this ensures that
the “patching” correctly propagates while maintaining compu-
tational efficiency. The full method is detailed in Algorithm 4.

Upon convergence, HJ-PATCH provably recovers the same
0-superlevel set as a global contraction - the viability kernel
of the initial set, S(H(0)), see Theorem 3. Additionally, we
recover a safe CBVF upon convergence for an appropriately
chosen γ in (5). The quality of the converged value function
is directly correlated to the quality and conservativeness of the
initial candidate value function h0.

Algorithm 4 HJ-PATCH (In-the-loop)

Require: h0(x) : X 7→ R : Initial value function
ℓ(x) : X 7→ R : Constraint function (Optional)
C ⊆ X : Oracle-certified safe cells (Optional)

// Active set is set of potentially unsafe states
1: h0(x)← min{ℓ(x), h0(x)}
2: R(0) ← ∂ζH(0) ◁ Initialize active set
3: R(0) ← R(0) \ C ◁ Remove oracle-certified cells
4: k ← 0

// Boundary is certified once R(k) is empty
5: while R(k) is not empty (or Robot operating) do
6: for x ∈ R(k) do
7: h(k+1)(x)← h(k)(x) + ∆(k) min{0, L∗

Fh
(k)(x)}

8: end for
9: H(k+1) ← {x | h(k+1)(x) ≥ 0}

// Value-decreasing states form set of interest
10: Q(k+1) ← {x | h(k+1)(x) ̸= h(k)(x) ∧ x ∈ R(k) }

// Pad set with neighbors if near safe set boundary
11: R(k+1) ← padp(Q(k+1)) ∩ ∂ζH(k+1)

12: Observe environment
13: U (k+1),D(k+1), ℓ(k+1) ← Update (U (k),D(k), ℓ(k))

// Less actuation or more disturbance can be unsafe
14: if U (k+1) ⊆ U (k) or D(k+1) ⊇ D(k) then
15: R(k+1) ← ∂ζH(k+1) ◁ All boundary states active
16: end if

// New obstacles can be unsafe
17: if ∃ x such that h(k+1)(x) > ℓ(k+1)(x) then
18: T ← {x | ℓ(k+1)(x) < h(k+1)} ◁ New active states
19: h(k+1)(x)← min{ℓ(k+1)(x), h(k+1)(x)}
20: H(k+1) ← {x | h(k+1)(x) ≥ 0}

// New active set includes prior and obstacle-updated
active states around new boundary

21: R(k+1) ← (R(k+1) ∪ T ) ∩ ∂ζH(k+1)

22: end if
23: publishCurrentCBF(h(k+1))
24: k ← k + 1
25: end while
26: return h∗(x) = h(k)(x) ◁ Converged value function



A. Algorithm details
We discuss HJ-PATCH for offline convergence and online

adaptation below.
a) Offline patching: Alg. 4 takes an approximate CBF

h0(x), optionally a constraint function ℓ(x), and optionally a
set of oracle-certified safe states as its input. As detailed in
Algorithm 4, the iterative process is initialized with a candidate
value function h0(x). The initial active set, R(0), comprises the
states near the boundary of the candidate safe set (line 2). If an
external oracle can certify that a subset of states C is already
safe (e.g., via neural network verification techniques [40],
[41]), these states can be removed from the active set for
further computational efficiency (line 3). The iterative loop
applies the contractive HJI-PDE update (11) to states in the
active set (lines 6- 7). The active set is then updated to filter
out locally safe states, i.e. non-decreasing values (line 10) after
which it is expanded to include its neighbors (line 11). padp

denotes padding a space-discretized set with its p neighbors
in every dimension (equivalent to the Minkowski sum with a
ball of small radius in continuous space):

padp(R) =
⋃
r∈R

Xp(r). (18)

At every iteration k, R(k) ⊆ ∂ζH(k) by line 11, ensuring only
a subset of the boundary cells are “active”. This procedure
repeats until the active set is empty (line 26) indicating
convergence.

b) Online patching: When used in-the-loop, the al-
gorithm includes additional logic to handle environmental
changes. Safety-decreasing updates require special care to
ensure that states previously assumed safe are re-evaluated. If
actuation limits decrease or disturbance bounds increase, the
algorithm conservatively resets the active set to the current
boundary states to force a full re-evaluation (line 15). If new
obstacles appear, the value function is first clipped to respect
the new constraints, and the active set is expanded to include
any boundary states that coincide with the new obstacles’
boundaries (lines 17- 21). Safety-enhancing updates do not
require changing the active set.

B. Theoretical guarantees for HJ-PATCH

Because HJ-PATCH updates only a subset of states at each
iteration, our theoretical analysis must explicitly consider the
discretized state-space on which the algorithm operates. These
guarantees assume a static environment. Theorem 3 provides
the key theoretical underpinning of HJ-PATCH.

Theorem 3 (Algorithm 4 recovers the viability kernel of the
initial candidate safe set). If Alg. 4 converges, then, initializing
with h(0)(x) = h0(x), we have H∗ = S(H0).

The proof of Theorem 3 relies on three supporting lemmas.
We first define a spatially discretized equivalent of con-
trol invariance, which we term discrete-approximatedcontrol
invariance. We then prove that HJ-PATCH converges to a
discrete-approximatedcontrol invariant set (Lemma 6), and
that, leveraging Lemma 7, this set is a superset of the viability
kernel (Lemma 8). Together, these properties are sufficient to
prove the main theorem.

Inspired by Nagumo’s Theorem (2), we first define a
discrete-approximatedcontrol invariant set for a discretized
state space.

Definition 5 (Discrete-approximatedcontrol invariant set H).
Let h(x) be defined on a discretized state-space and H its
0-superlevel set. Assuming ∂h

∂x ̸= 0 for all x ∈ ∂ζH, then H
is discrete-approximatedcontrol invariant if and only if

L∗
Fh(x) ≥ 0 for all x ∈ ∂ζH. (19)

While (19) is spatially more restrictive than (2), it acts as a
conservative buffer against interpolation errors that otherwise
preclude a strict guarantee on coarse grids or for value
functions with high Lipschitz constants.

Lemma 6 (Algorithm 4 converges to a control-invariant set).
If Alg. 4 converges, then the safe set H∗ obtained upon
termination of the algorithm is discrete-approximatedcontrol
invariant.

Proof. Without loss of generality, we consider C = ∅, i.e.
no cells are oracle-certified upon initiation. Recall by Def. 5
that H is discrete-approximatedcontrol invariant if and only
if L∗

Fh(x) ≥ 0 for all x ∈ ∂ζH. Specifically, we seek to
show that for every iteration k, every boundary cell not in
the current active set has a positive Lie derivative, i.e. if x ∈
∂ζH(k)\R(k), then L∗

Fh
(k)(x) ≥ 0. Then, if Alg. 4 converges,

i.e. R = ∅, we either have (i) ∂ζH = ∅ implying H = ∅ or
(ii) L∗

Fh(x) ≥ 0 for all x ∈ ∂ζH.
We proceed by induction. Recall that R(0) = ∂ζH(0) \ C.

We have to certify that if x ∈ ∂ζH(0) \ R(0) = ∂ζH(0) ∩ C,
then L∗

Fh
(0)(x) ≥ 0, which is guaranteed for all x ∈ C.

Next, for iteration k we assume that if x ∈ ∂ζH(k) \
R(k), then L∗

Fh
(k)(x) ≥ 0. We hence need to show that

x ∈ ∂ζH(k+1) \ R(k+1) implies L∗
Fh

(k+1)(x) ≥ 0, or
its contrapositive; if L∗

Fh
(k+1)(x) < 0, then x ∈ R(k+1)

for all x ∈ ∂ζH(k+1). For all x ∈ ∂ζH(k+1) it is then
sufficient to show x ∈ R(k+1) for the following scenarios:
(i) L∗

Fh
(k+1)(x) = L∗

Fh
(k)(x) < 0 and (ii) L∗

Fh
(k+1)(x) ̸=

L∗
Fh

(k)(x).
For (i), by assumption, if L∗

Fh
(k)(x) < 0, then x ∈ R(k).

As L∗
Fh

(k)(x) < 0, by (11), h(k+1)(x) ̸= h(k)(x), hence x ∈
Q(k+1), and by extension x ∈ R(k+1) if x ∈ ∂ζH(k+1).

For (ii), by (14), L∗
Fh

(k+1)(x) ̸= L∗
Fh

(k)(x) implies that
there exists a state y ∈ Xp such that h(k+1)(y) ̸= h(k)(y).
Hence, by Alg. 4 (L10), y ∈ Q(k+1). By definition, x is a
neighbor of y (bijective mapping), hence x ∈ padp(Q(k+1)).
Then, x ∈ R(k+1) if x ∈ ∂ζH(k+1) (Alg. 4 (L11)).

We also point out the following:

Remark 5. It is possible that positive-valued states at an
iteration k (or oracle-safe cells at iteration k = 0) become
part of the active set at a later iteration through padding.

Lemma 7 (Optimistic global warm-start HJ reachability recov-
ers the viability kernel [14, Thm. 2]). Let h0(x) be the initial
function and h∗(x) be the value obtained upon convergence
of (10). Then, there exists a continuous function m : X 7→ R
such that S(H0) = {x | m(x) ≥ 0}, h0(x) ≥ m(x) for all
x ∈ X , and h∗(x) = m(x) for all x ∈ X .



Lemma 8. [Algorithm 4’s safe set upon convergence is a
superset of the viability kernel] If Alg. 4 converges, then,
initializing with h(0)(x) = h0(x), we have H∗ ⊇ S(H0) upon
convergence.

Proof. We denote Λ as the single-step (i.e. within the while
loop) operator for Alg. 4 and Γ as the single-step operator for
standard reachability, i.e. (11). It applies to both h(x) and H.
Hence, H(k+1) = Λ(H(k)). Lastly, we note that h(x) ≥ g(x)
for all x if and only if H ⊇ G, with H and G the 0-superlevel
sets of h(x) and g(x).

Then, if for every iteration k, H(k) ⊇ S(H0), we converge
to a superset of S(H0). We proceed by induction. By definition
of the viability kernel (Def. 2), we have H(0) ⊇ S(H0).

Next, for iteration k we assume h(k)(x) is such that
H(k) ⊇ S(H0). We hence need to show thatH(k+1) ⊇ S(H0).
Particularly, we will show that H(k+1) ⊇ G, and G ⊇ S(H0),
for G = Γ(H(k)).

By construction, for any value function h(x), by Alg. 4,
we have Λ(h(x)) ≥ Γ(h(x)), hence Λ(H) ⊇ Γ(H). Thus,
H(k+1) = Λ(H(k)) ⊇ Γ(H(k)) = G.

It remains to show that G is such that G ⊇ S(H0). By
Lemma 7 and given H(k) ⊇ S(H0), applying standard reach-
ability (11) recursively to h(k)(x) recovers a value function
ĥ∗(x) = Γ ◦ · · · ◦ Γ(h(k)(x)), such that Ĥ∗ = S(H0).
Noting that Γ is a contraction mapping, we have S(H0) =
Γ ◦ · · · ◦ Γ(H(k)) ⊆ Γ(H(k)) = G.

Combining, we have H(k+1) ⊇ S(H0), concluding the
proof.

We are now ready to prove Theorem 3

Proof of Thm. 3. Combining Lemma 6 and Lemma 8 and not-
ing that the viability kernel is defined as a set’s largest control
invariant subset (Def. 2), we directly obtain H∗ = S(H0).

Furthermore, because the algorithm relies on a contractive
update, it provides the same strong increasing safety guarantee
as SAFEADAPT-REFINECBF.

Theorem 4 (Safer with every iteration). Alg. 4 montonically
decreases the rate of false positive states with every iteration

Proof. HJ-PATCH guarantees contraction of the value function
h with every iteration, thus guaranteeing a monotonic decrease
of the number of false positive states (Def. 4)

C. Implications and use-cases for HJ-PATCH

The theoretical results highlight the fundamental difference
between our two proposed algorithms. REFINECBF can ex-
pand the safe set beyond the initial guess, making it ideal
for improving overly conservative initializations, including
analytical and backup CBFs. In contrast, HJ-PATCH is de-
signed to efficiently patch an initial guess by finding its
largest control invariant subset. This makes it particularly well-
suited for patching “almost-safe” learned CBFs, which may be
performant but contain small, critical failure regions. One core
difference between the theory outlined for REFINECBF and
HJ-PATCH is the difference in the obtained safe set. Addition-
ally, unlike HJ-PATCH, REFINECBF can reduce conservatism
after safety-increasing updates by expanding the safe set.

The primary benefit of HJ-PATCH is its computational
performance. However, the speedup is most significant when
the “patch” needed is very localized (relative to the entire
state space). The algorithm’s local update structure is inher-
ently well-suited for modern multi-core CPUs, which excel
at the logic required to process a small, irregular active set.
Our CPU-based implementation leverages this for significant
performance gains, especially for localized active sets. A GPU
implementation presents a more nuanced trade-off: while a
naive approach would suffer from poor hardware utilization,
high performance is theoretically achievable using advanced
patterns like stream compaction to first gather the active states.
This, however, adds a non-trivial pre-processing overhead.
Given the demonstrated effectiveness of the CPU for patching
localized errors, we leave a detailed GPU implementation and
performance comparison as an avenue for future work.

V. EXPERIMENTS (SIMULATION)

Previous work established the efficacy of REFINECBF [27]
and its computational scalable successor, HJ-PATCH [28],
for offline value function refinement. We demonstrated that
these methods can improve conservative, analytically-derived
CBFs for adaptive cruise control, correct unsafe and relax
conservative CBFs for high-dimensional quadcopter dynamics,
and scale to patch neural network-based CBFs. However,
these validations were conducted offline on static, pre-defined
environments.

The central contribution of this paper is to evaluate RE-
FINECBF and HJ-PATCH for in-the-loop adaptation to non-
stationary environments. Here, the algorithms must update
the safety-critical value function in real-time in response
to environmental changes, such as the appearance of new
obstacles or shifts in system dynamics.

A key challenge for in-the-loop deployment is computa-
tional cost. However, a principal advantage of our methods is
their ability to warm-start the refinement process from a pre-
viously computed value function, a prior CBF from a similar
environment, or even a simple signed-distance function. This
warm-starting capability is crucial for rapid adaptation. While
formal safety guarantees are contingent upon the convergence
of the algorithms, SAFEADAPT-REFINECBF and HJ-PATCH
theoretically ensure that the value function’s safety improves
with every iteration. In practice, REFINECBF has almost
monotonic improvement in our experiments. Many realistic
environmental pertubations, such as those in our experiments,
are “localized” in their impact. This allows the algorithms
to rapidly refine or patch the value function and consistently
converge within a few iterations.

To validate this online adaptation capability, we conduct
a series of experiments in realistic simulators, comparing
our methods against relevant baselines. Each experiment is
repeated over 10 runs (5 if all failures) to ensure statistical
significance. All simulations were performed on a desktop
computer equipped with an NVIDIA RTX 3090 GPU and
32GB of RAM. All controllers run at 50Hz with the value
function updates running in parallel with ∆(k) = 0.1s for all
iterations k at a typical rate of 1− 3Hz.



2 1 0 1 2 3 4 5 6
x [m]

5

4

3

2

1

0

1

2

3

4

5

y 
[m

]

Safety boundaries (0-level sets)

indiv. CBFs
HJR
refineCBF
HJ-Patch
jointCBF
Orientation

4

2

0

2

4

y 
[m

]

jointCBF - HJR HJ Patch - HJR

2 0 2 4 6
x [m]

4

2

0

2

4

y 
[m

]

refineCBF - HJR

2 0 2 4 6
x [m]

refineCBF - HJ Patch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Fig. 1: Comparison of converged value functions for REFINECBF,
HJ-PATCH, HJR, and jointCBF at a fixed robot orientation (see arrow)
and velocity (v = 1.0m/s) slice. (Left) The 0-level sets show that
naively combining constraints (jointCBF) incorrectly merges the safe
sets, creating an unsafe region between the obstacles. HJ-PATCH and
REFINECBF both produce safe, comparable boundaries compared to
the HJR baseline. (Right) The difference plots highlight that HJ-
PATCH’s value function is a close match to the HJR solution, while
REFINECBF is more conservative (negative differences) and jointCBF
is dangerously optimistic (large positive differences).

A. Ground robot: Combining obstacle-dependent CBFs

For systems like ground vehicles, CBFs for individual
obstacles can be derived analytically or via Hamilton-Jacobi
(HJ) reachability. A common practice is to enforce these
individual CBFs as independent constraints in an optimization
problem. However, these constraints are not necessarily jointly
feasible, which can compromise safety.

Our experiment investigates this problem in a Gazebo
simulation where a Jackal robot, modeled as a dynamically
extended unicycle model with a limited-range LiDAR navi-
gates to a goal. We model the jackal robot as a dynamically
extended bicycle model:

ṗx = v cos(θ), ṗy = v sin(θ), v̇ = a, θ̇ = ω, (20)

with inputs [a, ω]. Upon detecting a new obstacle, we must up-
date the safety controller online. We compare our warm-started
methods—REFINECBF (on both CPU and GPU) and HJ-
PATCH (CPU)—against two baselines: naively combining con-
straints (jointCBFs) and re-solving the problem from scratch
using HJ reachability (HJR). All methods operate under a
minimum forward velocity constraint of 0.1 m/s to prevent
deadlock and to showcase how our methods systematically
incorporates bounded control inputs.

First, we analyze the quality of the converged value func-
tions (if given enough time and perfect knowledge of the
environment) in a static two-obstacle environment (Fig. 1),
where REFINECBF and HJ-PATCH are initialized from the
individual CBF of each obstacle. The individual CBFs, hi’s,
are computed by running (11) until convergence for the rect-
angular single obstacle constraint function ℓ(x) = ℓ(px, py),
thus hi(x) = hi(px, py, v, ω). Naively combining individual
CBFs h(x) = mini{hi(x)} (jointCBF) produces an overly
optimistic and unsafe value function. In contrast, HJ-PATCH
successfully computes a safe value function that closely ap-
proximates the ground truth from HJR, while REFINECBF is
safe but more conservative.
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Fig. 2: Online performance with limited-range obstacle detection.
These plots show system behavior across 10 simulation rollouts where
obstacles are discovered online. (Left) shows the trajectories for all
methods (with dotted lines for trajectories post collision) for multiple
rollouts. We additionally visualize the detection points based on the
limited range of the sensor. (Right) visualizes the value function
(with the safety boundary). These rollouts demonstrate the need for
refinement, as HJR and jointCBF lead to collision. Additionally, when
a GPU is not available, HJ-PATCH’s computational efficiency enables
patching rapidly to provide safety, whereas REFINECBF (CPU) fails.

TABLE II: Quantiative measure (↓ better) of number of collisions
of jackal simulation experiments for online adaptation. Experiments
that constantly lead to collisions are only executed 5 times. These
measures highlight the benefits of REFINECBF and HJ-PATCH.

REFINECBF REFINECBF (CPU) HJ-PATCH (CPU) jointCBFs HJR
0/10 5/5 1/10 5/5 5/5

Next, we evaluate the critical challenge of online adaptation
as the robot discovers obstacles in real time (Fig. 2). The
results, quantified in Table II, demonstrate that the base-
line approaches lead to collisions for distinct reasons. The
jointCBF method is inherently unsafe, as it fails to account
for joint feasibility between obstacle constraints. In parallel,
re-computing the ground-truth safe set from scratch (HJR) is
computationally intractable for real-time updates. In contrast,
while REFINECBF requires a GPU to be fast enough for safe
online updates, HJ-PATCH provides robust safety performance
on a CPU in 9/10 rollouts. A single outlier is visible in
Fig. 2 (right). The logs show a communication delay between
computation of h(k) and its transmission to the safety filter at
2 subsequent iterations, which could explain the failure. This
highlights HJ-PATCH’s computational efficiency, making it a
viable solution for resource-constrained platforms where GPU
acceleration is unavailable.

B. Quadcopter: Backup CBF comparison

Backup Control Barrier Functions (Backup CBFs) are a
method for ensuring safety by relying on a pre-defined,
expert-chosen backup maneuver. A control action is deemed
safe if the system can always execute this fixed backup
policy (e.g., “brake hard”) for a set time without violating
safety constraints [42]. This approach avoids complex online
optimization but is inherently limited by the quality and
applicability of the single, fixed backup policy. We compare
against a variant that mixes nominal and backup controllers,
as it is more computationally tractable.

We demonstrate this limitation in a planar quadcopter simu-
lation where the goal is occluded by an obstacle (Fig. 3), with
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Fig. 3: Online adaptation and deadlock avoidance in a quadcopter
navigation task. The quadcopter must navigate to a goal in a
region initially occluded by an obstacle. (Left) Trajectories show
REFINECBF successfully discovering a path over the obstacle, pro-
gressively incorporating the newly seen free space (yellow) into the
safe set, then iteratively incorporating this new information into its
safe set. In contrast, the backupCBF method gets stuck in a deadlock,
unable to find a path to the goal with its fixed backup policy. (Right)
The value function confirms this behavior. REFINECBF’s value dips
as it navigates the obstacle and unseen space boundary, and then
recovers as the safe set expands. The backupCBF value drops and
oscillates near the safety boundary (value=0), indicating a persistent
deadlock. Further analysis on why REFINECBF avoids deadlock is
provided in Fig. 10a.

dynamics:

ṗy = vy, ṗz = vz, v̇y = g tan(ϕ), v̇z = T − g, (21)

with inputs u = [ϕ, T ]. The drone uses a simulated front-facing
camera, meaning the safety constraint requires it to remain
within the currently visible, obstacle-free space. The nominal
controller is a simple LQR designed to hover at the goal, which
has no inherent obstacle avoidance capabilities. Our method,
REFINECBF, is initialized with the signed-distance function
ℓ(x) = ℓ(py, pz) of the initially known environment, which
can be computed efficiently analytically (for polytopes) and
through discretization using Fast Marching Methods [43] (any
environment).

The experiment highlights a critical failure mode for meth-
ods relying on fixed expert policies. The backupCBF method
successfully maintains safety but its simple backup maneuver
(here: stabilize to a hovering position) is insufficient to nav-
igate the obstacle, resulting in deadlock (Fig. 3). In contrast,
REFINECBF characterizes a safety filter over the full dynamics
of the system. This obtains more informative gradients that are
fully state-dependent, enabling the drone to navigate around
the obstacle, as the safe set at a high velocity “nudges” the
drone upwards, see Fig. 10b (left), for a visualization.

As new free space is revealed, REFINECBF seamlessly
expands the safe set online (Fig. 10b, center and right). We
do not compare against HJ-PATCH in this scenario, as its
formulation does not support the expansion of the safe set
into previously unknown areas.

VI. EXPERIMENTS (HARDWARE)

To validate our approach on a physical platform, these
hardware experiments are designed to demonstrate the real-
time adaptation capabilities of REFINECBF.

Fig. 4: A snapshot of the Jackal hardware experiment. The robot
detects the suddenly fallen obstacle blocking its path. The top-right
inset shows the robot’s internal map at the moment of detection; the
safe set (green) has not yet been updated to incorporate the new SDF
map (black), highlighting the need for rapid, in-the-loop replanning
to ensure safety.
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Fig. 5: Trajectory comparison for the Jackal hardware experiment.
These plots show time snapshots of the system’s trajectory after the
environment is altered at t = 3.0s. The fully adaptive REFINECBF
(blue) successfully backtracks to find a new, safe path. The non-
adaptive baseline (refineCBF (no online detection), orange) operates
on a stale map, leading directly to a collision with the new obstacle.

• Fully Adaptive REFINECBF (Our Method): Continuously
refines its value function in response to environmental
changes perceived in real time by the robot’s sensors
(simulated sensing).

• Static REFINECBF (Baseline): Operates REFINECBF on
a static representation of the environment captured only
at initialization. This controller does not incorporate
subsequent perceptual updates, highlighting the necessity
of online adaptation for safety.

Both still iteratively update the value function online, but the
baseline does not observe environmental changes in the loop.
All experiments were conducted on a desktop computer with
an NVIDIA RTX-4090 and 64GB of RAM. All controllers
run at 50Hz with the value function updates running in parallel
with ∆(k) = 0.1s for all iterations k at a typical rate of 2−5Hz.

A. Mobile robots: Obstacle appears

We validate our approach in a dynamic hardware experiment
that mimics a challenging search-and-rescue scenario where
the environment changes unexpectedly. We initialize the safe
set using a CBF centered at the starting position p0 with a
small initially safe region, with a learned h0(x) using [10]
with ℓ(x) = ℓ(px, py) a circle around p0. A Clearpath Jackal



Fig. 6: Quadcopter hardware experiment with a previously occluded
obstacle. Snapshot of the physical setup where a quadcopter navigates
towards its goal (green circle). The circular obstacle is initially
hidden from view by the blue block. The bottom-right inset shows
the constraint and safe set at the moment the new obstacle is first
detected; the safe set (green) has not yet been updated, highlighting
the challenge for the real-time safety filter.
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Fig. 7: Trajectories from 10 hardware trials comparing adaptive
and non-adaptive REFINECBF. The quadcopter must navigate an
environment with an unexpected obstacle (light gray circle) that only
becomes visible after clearing the first obstacle. The fully adaptive
REFINECBF (blue) successfully avoids the new obstacle in all 10
trials. The non-adaptive baseline (refineCBF (no online detection),
orange), operating under the optimistic assumption that unseen space
is free, collides in every trial.

UGV, modeled using (20), is tasked with reaching a goal
placed behind a two-tiered obstacle structure (Fig. 4). During
operation, the top block is deliberately knocked over, blocking
the robot’s initial path and forcing an online adaptation.

As shown in Fig. 5, the fully adaptive REFINECBF im-
mediately perceives the new obstacle, backtracks, and the
safety filter enables safely getting to the goal. In contrast,
the non-adaptive baseline, which operates on a stale map of
the initial environment, fails to see the change and collides
with the fallen block. This result demonstrates that with a
simple nominal controller, our online adaptation is critical for
maintaining safety in dynamic environments. We present a
single, representative run for each case, as this outcome was
highly consistent across 5 trials.

B. Drone: Sensing limitations

Robots with forward-facing sensors like cameras or Li-
DAR have a limited field of view, forcing them to make
assumptions about unobserved areas. A common and efficient
strategy is to plan optimistically, assuming unobserved space is

Fig. 8: Hardware experiment with unmodeled aerodynamic distur-
bances. A snapshot of the quadcopter navigating through a narrow
passage containing a fan (wind visualized with yellow streamlines).
While the geometry of the passage is known, the aerodynamic distur-
bance produced by the fan’s and its interaction with the environment
is not and must be detected and compensated for in real time.
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Fig. 9: Trajectories from 10 hardware trials with a dynamic distur-
bance. The quadcopter encounters a strong wind disturbance while
flying between the two known obstacles. The safety value function
is initialized as a CBF centered at the starting position with a small
initially safe region. The adaptive REFINECBF, which incorporates
real-time disturbance changes, successfully compensates and navi-
gates the passage in 9/10 trials. The baseline controller (orange),
which assumes nominal dynamics, fails in every trial, consistently
being pushed into the wall by the unexpected disturbance.

obstacle-free until proven otherwise. We designed a hardware
experiment to demonstrate that REFINECBF’s rapid online
adaptation makes this optimistic approach both viable and safe.

In our scenario, a quadcopter, modeled using (21), must
navigate to a goal that is initially occluded by a large rectan-
gular obstacle (Fig. 6). Hanging from the ceiling behind this
obstacle is a second, circular obstacle, completely hidden from
the robot’s initial view. The initial value function h0(x) = ℓ(x)
is the SDF (computed as described in Section V). Across 10
consecutive trials, the fully adaptive REFINECBF successfully
perceived the new obstacle (recomputing the constraint func-
tion), updated its value function in real time (re-converging
in under 2 seconds), and adjusted its trajectory to safely
reach the goal. In contrast, the non-adaptive baseline, acting
on its initial optimistic map, consistently collided with the
unexpected obstacle, as shown in the trajectories in Fig. 7.

Defining the safety value function over all states enables
navigating between obstacles without a sophisticated nominal
policy, see Fig. 10b for details.



C. Quadcopter: Varying disturbances

Our final hardware experiment tests REFINECBF’s ability
to adapt not just to geometric changes, but also to unmodeled
dynamic disturbances. In this scenario, a quadcopter navigates
a fully known environment, but a fan creates a strong, localized
wind disturbance within a narrow passageway (Fig. 8). We
consider the following dynamics:

ṗy = vy + d0, ṗz = vz + d1, v̇y = g tan(ϕ), v̇z = T − g,

with inputs u = [ϕ, T ] and disturbances d = [d0, d1]. We
simulate a drone equipped with a flow sensor that allows it to
detect and incorporate this disturbance in the safety analysis in
real time, with a default value of d0, d1 ∈ D0 = 0. The bounds
Dfan are fitted a priori for different fan speeds. The initial value
function h0 is a learned CBF, using [10], centered around the
initial hover point p0.

Upon entering the passage and detecting the airflow, the
fully adaptive REFINECBF rapidly updates its safety value
function to account for these new dynamics. As the results
from 10 trials show (Fig. 9), this allows the drone to success-
fully counteract the disturbance and traverse the passage in
9 out of 10 attempts. We hypothesize that the single failure
occured due to the non-uniformity of the “wind” provided by
the radial fan, which can destabilize the quadcopter. The non-
adaptive baseline, operating on the assumption of nominal dy-
namics, is unable to compensate for the wind and consistently
pushed into the obstacle.

For this experiment, we intialized the CBVF conservatively
around its initial hover point, see Fig. 10c (left). This ex-
periment qualitatively demonstrates that the CBVF is able to
expand from an initial safe but conservative safe set (Fig. 10c,
center and right). It leverages SAFEADAPT-REFINECBF to
ensure contraction upon detection of the wind disturbance.
The nominal policy is a proportional controller with sub-goals
dynamically updated to be the closest safe state (at 0 velocity)
to the final goal.

VII. PRACTICAL USE-CASES, LIMITATIONS & FUTURE
DIRECTIONS

This work provides a step towards scalable, real-time safety
adaptation for robotic systems. Our experiments demonstrate
that by warm-starting from a prior value function, methods
like REFINECBF and HJ-PATCH can successfully adapt to
sudden environmental changes, such as new obstacles or
unmodeled dynamic disturbances (e.g., wind). This capability
is critical for practical applications in evolving environments,
including search-and-rescue, autonomous logistics, and long-
term mobile robot deployment. However, several limitations
highlight important avenues for future research.

While promising, our approach has three principal limita-
tions: idealized sensors, model dependency, and computational
scalability.

1) Idealized Sensors: In our hardware experiments, we
focus on the controls and safety pipeline, and therefore
simulated the sensing pipeline and used high-fidelity
motion capture for state estimation. This setup bypasses

some significant challenges of a full-stack implementa-
tion, such as incorporating uncertainty inherent in state
estimation and perception.

2) Known dynamics model: Our methods fundamen-
tally rely on an accurate known dynamics model with
bounded uncertainties or disturbances, i.e. F (x, u, d),
limiting adoption to a subset of robotic domains.

3) Scalability of dynamic programming: The core of
both REFINECBF and HJ-PATCH is based on dynamic
programming (DP), operating on a discretized state-
space grid. While effective for the systems we studied
(up to 4D for on-the-fly refinement), relying on DP
inherently limits scalability.

These limitations highlight several key avenues for future
work. The most immediate practical step is to integrate re-
alistic sensor modalities, developing methods that update the
value function directly from noisy sensor data and explicitly
account for perceptual uncertainty.

To address scalability, a promising direction is to merge
our framework with modern learning-based approaches. While
fully learned value functions have shown promise for high-
dimensional systems, they are typically static and cannot
adapt online. Some recent approaches have started to enable
online variation by parameterizing the value function based on
disturbances or obstacles [44]. Building on this, a compelling
research path is to synthesize our more general real-time
adaptation techniques with these expressive, high-dimensional
function approximators. Such a merger could combine the
scalability of deep learning with the dynamic responsiveness
demonstrated in our work, enabling safe, real-time adaptation
for complex robots like manipulators and humanoids.

VIII. CONCLUSIONS

This work demonstrates that HJ reachability, a cornerstone
of formal safety analysis, can be made practical for real-time
robotic applications when deployed with a CBF-like safety
filter. We presented two algorithms, REFINECBF and its suc-
cessor HJ-PATCH, that effectively adapt safety-critical value
functions to in-the-loop changes in a robot’s environment or
dynamics. By leveraging warm-starting, our methods rapidly
re-converge to a safe policy following unexpected events, a
capability we validated against multiple baselines in realistic
simulations and on physical hardware. Our results highlight a
key finding: warm-started HJ reachability provides a principled
and effective framework for ensuring safety in dynamic, real-
world settings, bridging the gap between theoretical guarantees
and practical deployment.
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